
Advanced Physics Laboratory

Lab I: Thermal Control

Natalia K. Taub

November 13, 2023

Abstract

To investigate the application of control theory to thermal control problems, we constructed a sys-
tem which uses a thermoelectric cooler (TEC) and a thermistor to control the temperature of a small
metal block attached to a test bench. Using an Arduino Uno micro-controller and a MATLAB applica-
tion running on a connected laptop, we implemented and then tested and calibrated P and PI control
algorithms.

I. Theory

To adjust the temperature of the block toward a given set point and then maintain it there, a control
algorithm was required. Because we lack sufficient knowledge of the internal dynamics of the system a
feedforward control system could not be utilized. Instead we implemented and then tested two feedback
control systems.

a) Proportional Control

The first control algorithm we implemented was proportional control, which may be expressed as

y(t) = Kpe(t) (1)

where y(t) is the control signal at time t, which, as discussed below, becomes the signed duty cycle of the
Arduino PWM output that drives the TEC to heat or cool the block. e(t) is the error given by

e(t) = Tset − T (t) (2)

where T (t) is the measured temperature at time t and Tset is the set temperature. Kp is a positive constant,
as positive errors should produce a positive control signal to heat the block. Proportional control has a major
flaw, however. This algorithm cannot, for reasons discussed below, hold the system at any set temperature
other than room temperature.

b) Integral Control

To remedy the inability of a proportional algorithm to reach the set point, we then implemented an integral
control algorithm. Here the control signal is instead given by

y(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt′ (3)

where Ki is an additional positive constant. The integral term will build up, increasing the magnitude of the
control signal as the system hovers below or above the set temperature. Hence it will eliminate the drooping
effect present with pure proportional control.

1

fraden
Cross-Out

fraden
Inserted Text
Grade: A

Great report! Well explained, clear, informative drawings, data nicely presented and thorough. 



c) Tuning

The ideal values for the control parameters Kp and Ki will be determined by the system in characteristics
of the control system and other design constraints. Several competing considerations here are particularly
important. If the set temperature is not room temperature, there will be some net heat entering the system
from or being lost to the endowment even at constant temperature and hence some constant control signal
will be required to maintain the final state of the system. Per equation (1), however, the control signal
is proportional to the error and so in order to maintain the steady state temperature there must be some
error. The system temperature thus a droops away from the set temperature and toward room temperature.
Because Kp is the constant of proportionality between y(t) and e(t) the magnitude of the droop will be
inversely proportional to Kp for a given set temperature. This steady state error will not occur when
integral control is used, however, because the integral of the error will continue to grow for any constant
error and the control signal will respond, pushing the system closer to the set temperature.

More generally, larger values of the control parameters will make the control system more responsive to
errors and thus lead to the system moving toward faster toward its set point. This does not, however, imply
that the ideal values of Kp and Ki are as large as possible, given the constraints of the hardware. As the
values of the control parameters increase they eventually reach a critical point where the lag between the
activation of the TEC and the temperature of the thermistor increasing – as heat must diffuse through the
block – creates first transient and then steady state temperature oscillation. The ideal parameters will be
those which balance these dueling considerations, producing a system which is responsive and gets close to
the set point but not unstable.

Several methods are available to determine these ideal values, of which we utilized two. The first was trial
and error. We tested a variety of values, determined that some were clearly too low – due to slow response to
a change in set point – and some too high – due to oscillation – and chose values between the two extremes.
We then tried the open loop Ziegler Nichols method. Here the response of the system to a step change in
the control signal is observed, and the value of the control signal (χ0), the change in temperature (Km),
the dead time before the system responds to the control signal (td), and the time constant for the system
response (τm) are used to calculate the ideal values using the expressions given in Table 1. below.

Kp Ki

P-Control χ0

Km

τm
td

0

PI-Control 0.9 χ0

Km

τm
td

Kp

3.3td

Table 1: Formulas for Ziegler Nichols open-loop parameters, taken from
http://216.92.172.113/courses/phys39/Thermal%20Control/PID/07-PID%20Controller.pdf.

II. Experimental Setup

Our experimental setup can be separated into three parts; the temperature measurement and control hard-
ware and its associated analogue circuitry, the Arduino Uno that performs the necessary calculations, and
the connected laptop running the Matlab App which serves as our human interface.

a) Hardware Setup

To monitor and regulate the temperature of the block we used a thermistor and a thermoelectric cooler,
controlled by an Arduino Uno micro-controller. A full diagram of the control circuit can be seen in Fig. 1
below.

a.1) Temperature Monitoring

Temperature monitoring was accomplished using a thermistor, which was placed in a small hole drilled in
the metal block. As shown in the circuit diagram, it was wired in series with a resistor to create a voltage
divider and then the voltage drop over the thermistor was measured using one of the Arduino’s analogue

2



Figure 1: Diagram of the full temperature control circuit

inputs. Knowing the resistance of the other resistor and the total voltage supplied allowed us to calculate
the current through the divider and thus the resistance of the thermistor. This in turn allowed us to measure
temperature as the temperature, T , and resistance, R, of a thermistor are related by the B-parameterized
Steinhart-Hart equation

1

T
=

1

T0
+

1

B
ln

R

R0
(4)

where T0 is a reference temperature, in our case 25◦C. R0 is the resistance at that reference temperature,
and B another parameter, values for which were determined from the data sheet for the thermistor to be
100 kΩ and 4540K respectively. Hence, by rearranging the above equation, we may compute the temperature
of the thermistor via

T =
B

ln(R/R0) +B/T0
(5)

a.2) Temperature Control

For temperature regulation a thermoelectric cooler was connected to the metal block to supply, or remove,
heat. The other side of the TEC was attached to an AIO liquid cooler, which used a water block with an
integrated reservoir and a pump to transport heat to or from a radiator with two attached fans, where it
was dissipated into the room, or vice versa depending on the mode of operation.

The TEC itself contains a series of alternating pieces of differing electrical conductivity in a sheet, with
conductors placed on either side as seen in Fig. 3 below.

When an electrical current flows across the cooler, the peltier effect moves heat from one surface to
another to establish a temperature gradient between them. This effect is fully reversible by reversing the
direction of current flow, allowing the TEC to either heat or cool the block as desired. More specifically, the
heat per unit time supplied to the hot side of the TEC is given by

Qh = SmThI +
1

2
I2Rm −Km(Th − Tc) (6)

where I is the electric current supplied, Sm is the Seebeck Coefficient of the TEC, Rm its resistance, Km

its thermal conductance, and Th and Tc the temperatures of its hot and cold sides. The first term on the
left hand side accounts for the heat moved to the hot side by the Peltier effect, the second for the resistive

3



Figure 2: Peltier Effect Cooler, image from
https://upload.wikimedia.org/wikipedia/commons/a/a2/Peltierelement.png

heating due to current flow within the device, and the third for heat lost to conduction across device. As a
result, the heat per unit time supplied to the cold side is not Qc = −Qh but rather

Qc = −SmThI +
1

2
I2Rm +Km(Th − Tc) (7)

because resistive heating occurs equally on both sides of the TEC.
Assuming that the temperature of the block is effectively uniform, either T = Th or T = Tc depending on

whether the TEC is being used to heat or cool the block. In steady state the heat supplied by the TEC will be
exactly canceled out by the net heat the block exchanges with its environment, so that Qh/c = hA(T−Troom)
per Newton’s law of cooling. Here h and A are the heat transfer coefficient and the exposed surface area of
the block. The steady state conditions, for heating and cooling, are thus

hA(T − Troom) = SmTI +
1

2
I2Rm −Km(T − Tc) (8)

hA(T − Troom) = −SmThI +
1

2
I2Rm +Km(Th − T ) (9)

and hence, rearranging, in steady state the temperature is

T =
hATroom + 1

2I
2Rm +KmTc

hA+Km − SmI
(10)

when the block is being heated, and

T =
hATroom + 1

2I
2Rm +KmTh − SmThI

hA+Km
(11)

when it is being cooled. Because the linear current term is always negative and in the numerator when for
heating and in the denominator for cooling, we can expect that so long as hA+Km > SmI dT

dI will be signifi-
cantly larger for heating than for cooling. We may expected this to generally be true, as Km = 0.5 WmK−1

while Sm = 0.024 VK−1.1 Conceptually, this asymmetry results from the different effect of resistive heating
on the heating and cooling of the TEC.

a.3) Additional Hardware

As the power output of the Arduino is insufficient to drive the TEC directly, power was supplied to it via
an H-Bridge connected to a separate power supply. The H-Bridge, wired as shown in Fig. 1 above, acts
as an amplifier capable of generating a voltage difference in either direction across the M+ and M- pins to

1Values from http://216.92.172.113/courses/phys39/Thermal%20Control/hardware.html

4



allow either heating or cooling. The voltage difference across those pins is proportional to the inputs on the
on the forward and reserve control pins, G and H, which were connected to two of the Arduino’s analogue
outputs, where the voltage could be adjusted between 0 and 5V by adjusting the duty cycle of the pulse
width modulation. Hence, utilizing Ohm’s law, the current across the TEC was given by

I =
Vs

Rm

PWM

255
(12)

where Vs is the maximum voltage supplied by the power supply to the H-Bridge, in our case 12V. Thus, we
can see that I ∝ PWM so the argument given above for dT

dI holds for dT
dPWM and we may expect that dT

dPWM
will be larger for heating than for cooling due to the asymmetry produced by resistive heating.

Additionally, a bi-metal switch was placed in series with the TEC and embedded within the block to act
as a hardware safety. The switch contains two strips of metal with different thermal expansion coefficients
so that as it heats above a certain temperature – in our case 70◦C – the circuit would be broken and the
TEC deactivated. This prevents the it from overheating and destroying itself, as a result of software errors.

b) Arduino Software Overview

The Arduino has much lower software overhead than Matlab, and so runs much faster. For this reason as
much of the control functionality as possible was implemented on the Arduino microcontroller. Only the
human interface was done in Matlab on the laptop, which was connected to the Arduino’s USB-b port. The
two communicated with one another via serial.

The Arduino program2 had two key functions, namely temperature monitoring and control. For the first,
it calculated the temperature of the block from the voltage drop over the thermistor, using equation (5) and
sent that across the serial connection to Matlab.

The temperature control functions of the Arduino depended on the control mode it was set to by the
Matlab interface. If set to hardware manual control, the analogue outputs which control the H-Bridge were
set manually by turning the two potentiometer, each of which was wired as a voltage divider and connected
to an analogue input. The Arduino simply mapped the 0-1023 input onto the 0-255 PWM range and then
wrote it to the H-Bridge outputs. If in software manual mode, the Arduino instead read the PWM value fed
to it by the Matlab interface and wrote it to the H-Bridge outputs.

When set in the two automatic control modes, the Arduino read the set temperature, Kp, and Ki values
sent by Matlab, then calculated the control signal. For proportional mode equation (1) was used directly,
while for proportional-integral mode

y(t) = Kpe(t) +
Ki

2

e(t)− e(t−∆t)

∆t
+ I(t) (13)

was used, where e(t) is the error function, ∆t the time elapsed since the last time the calculation was run,
and I(t) the running sum of all previous Ki terms. This is a trapezoidal-Reimann sum of the error function
and thus, because the calculation was done many times a second, produced a very close approximation
of equation (3). To prevent integral windup in PI mode, the I(t) term was zeroed out every time the
temperature crossed the set point if it was above a set thresh-hold. This control signal was then written to
the forward analogue output if it was negative and the reverse output if it was positive, after being clipped
if any higher than 255.

Regardless of the control mode, two software safeties were implemented. If the temperature of the block
was calculated at over 60◦C or nonzero values were to be written to both the H and G pins of the H-Bridge,
both outputs were set to zero so that the TEC was inactive. The temperature safety prevented us from
tripping the hardware safety and having to wait for the block to cool off before it could be used again. The
other prevented a shoot through, whereby writing to both the forward and reverse H-Bride inputs causes a
short which destroys the component.

2The Arduino code utilized may be found at https://github.com/WilliamSorger/Brandeis-PHYS39A.

5



c) Matlab Software Overview

A Matlab app,3 running on a laptop plugged into the Arduino’s USB-b port and interacting with it via
serial, functioned as our human interface. The GUI can be seen is Fig. 3 below.

Figure 3: The Matlab interface

The two lights were used to indicated when the software safeties had tripped, the current block tempera-
ture as calculated in Arduino was displayed in one of the text boxes, and the last ten seconds of temperature
data and PWM control signals were graphed on the two axes. The knob was used to select the control mode,
and a series of text boxes allowed the setting of Kp, Ki, the set temperature, and the software manual PWM
value. The temperature and PWM control signal data was also archived as the application ran, and then
saved to csv file when it was closed.

III. Results

a) Heating-Cooling Asymmetry

To characterize our thermal control system, we began by using the software manual mode to set a series
of constant values for the Arduino PWM outputs – and thus the power supplied to the TEC.4 Broadly
speaking the system response was similar in each of our five heating and five cooling tests. The temperature
of the block followed an s-curve, beginning at room temperature and rising or falling quickly for a brief
period before leveling off at an equilibrium temperature determined by the PWM value. Two examples of
the transient dynamics, for PWM = 22 in heating mode and PWM = 121 in cooling mode, are shown in
Fig. 4 below.

We then plotted the change in temperature produced by the TEC as a function of the set PWM values
for both heating and cooling, and found the trend-line via linear regression. The resulting plots are Fig. 5
and Fig. 6 below. The change in temperature was used rather than the final system temperature because
several of the tests were conducted on different days with room temperatures varying by several degrees.
For all cooling tests and most heating tests the system was at thermal equilibrium when the tests began,
although for a few of the latter the system had leveled off after being cooled from the previous test but not
quite reached equilibrium. In all cases the last temperature measurement before the PWM value was set
was used to calculate the temperature difference.

As can be observed in these plots, when the the system was in heating mode the magnitude of the slope
of the trend-line was significantly greater than when it in cooling mode; 0.406◦C/PWM as compared to

3The Matlab utilized may be found at https://github.com/WilliamSorger/Brandeis-PHYS39A.
4The data produced by this and other tests, as well as the python code utilized to generate the graphs and fit trend-lines

may be found at https://github.com/WilliamSorger/Brandeis-PHYS39A.

6



Figure 4: Transient response for PWM = 22 and PWM = −121

Figure 5: Plot of final temperatures vs. set PWM
in heating mode

Figure 6: Plot of final temperature vs. set PWM
in cooling mode

−0.126◦C/PWM. This was exactly the behavior we expected, given the discussion of dT
dI and dT

dPWM above.
Because resistive heating heats both the hot and cool sides of the TEC, the rate at which heat was produced
on the hot side was larger than the rate at which it was removed form the cool side. Interestingly, the fit of
the trend line is significantly better for the cooling data. The standard deviation of the error on the slope
was 0.00105 for cooling and 0.0130 for heating. This may be explained by the additional error introduced
by the uncertainty on the room temperature for some heating tests. Regardless, both plots are remarkably
linear given the non-linear forms found for T (I) in equations (10) and (11).

b) Automatic System Response

To further characterize the control system, we then tested both automatic control modes – proportional and
integral – with several different Kp and Ki values in heating and cooling modes. The temperature responses
for the various values, as well as the control signals during each test can be seen in Figures 7 through 14.

Several aspects of these results are notable. In the pure proportional control tests, the results were as
expected, namely a large temperature droop for low Kps which shrinks as it increases and concurrently
increasing oscillation in both the temperature response and the control signal. For heating we found that
Kp = 30 provided a reasonable balance of minimal droop and minimal oscillation, while for cooling Kp = 50
seemed about right. These produced no oscillation, although the droop was larger than we desired. The

7



Figure 7: Transient response for various Kp values in
heating mode

Figure 8: Plot of the control signals for Kp tests

Figure 9: Transient response for various Kp values in
cooling mode

Figure 10: Plot of the control signals for Kp tests

larger ideal value for cooling reflects the heating-cooling asymmetry with respect to dT
dPWM discussed above.

For testing our integral control system, Kp = 52 for heating and Kp = 198 for cooling were used for all
respective tests, for reasons explain below. As expected, droop was suppressed almost entirely in all cases,
though the time it took to reach the set temperature decreased with increasing Ki. The only outlier was the
Ki = 50 test for heating, where the system instead leveled off at 49◦C. Although the data file for that test
listed the set point as 50◦C, it is plausible that data for that test was mistakenly taken with a set point of
49◦C. This which would explain the result, especially as the steady state temperature was exactly 49◦C.

Finally, for several of our tests a large amount of noise was present, particularly in the PWM data. This
is particularly notable in the Kp = 300 and Kp = 400 calibration tests and the Ki calibration tests for
cooling. Given the high frequency and amplitude of the noise it seems unlikely to have resulted from actual
temperature fluctuations in the block. Rather, electrical noise seems the most likely explanation. Small
variations in the voltage supplied by the Arduino to the thermistor-voltage divider, perhaps arising from a
loose power or ground wire, may have perturbed the current and voltage drop, effecting the resistance calcu-
lations and through them the temperature measurements. In turn, the small fluctuations in the temperature
measurement would have influence the error and the control signal. That the noise is primarily visible in
tests with large values for the control parameters, which would have amplified the effect of small errors in the
block temperature, makes this the explanation more convincing. Rounding errors or other small variations

8



Figure 11: Transient response for various Ki values in
cooling mode

Figure 12: Plot of the control signals for Ki tests

Figure 13: Transient response for various Ki values in
cooling mode

Figure 14: Plot of the control signals for Ki tests

due to the use of floating point arithmetic in the Arduino’s calculations, for example, would not explain
the increase of noise in large-parameter tests. A loose wire would also help explain the sharp temperature
fluctuation just after 150 seconds into the Ki = 30 cooling test, visible directly in Fig. 13 and via its effect
on the control signal in Fig. 14.

c) Ziegler Nichols Tuning

To helps us determine the ideal control parameters more rigorously, we utilized the open loop Ziegler Nichols
method with the data from the two constant PWM test shown in Fig. 4 above. For χ0 we used the PWM
control signals, 22 and −121, while td was found manually by subtracting the time at which the PWM was
changed from zero from the time at which the temperature of the system began to respond. After that, each
group of five measurements was averaged to reduce noise, the data was differentiated numerically, and the
largest slope was found. This largest slope of the step response give Km/τm. Utilizing the expressions in
Table 1, for the proportional algorithm we determined that the ideal values of Kp were 58 for heating and
220 for cooling. For integral control, meanwhile, we found that the ideal values were Kp = 52, Ki = 6 for
heating and Kp = 198, Ki = 31 for cooling. The larger parameter values for cooling once again reflect the
asymmetry with respect to dT

dPWM discussed above.

9



To test these parameter values, we then used them for our integral control calibration tests, shown in Fig.
11 through Fig. 14. Unfortunately, due to a calculation error only discovered while writing this report we
originally identified the ideal Ki values as 9 for heating and 6.5 for cooling, and so tested those rather than
the values given above. Nonetheless, the closest values we tested to the correct Ziegler Nichols parameters
– Ki = 9 for heating and Ki = 30 for cooling – worked reasonably well, effectively minimizing the time
the system took to reach equilibrium and the temperature droop. They produced more oscillation than we
had tolerated with our Goldilocks calibration method, but the oscillations were transient. As expected, the
Ziegler Nichols parameters were not large enough to render the system unstable in steady state.

10

fraden
Cross-Out

fraden
Inserted Text
You discovered one of the greatest benefits of writing up results! The process teaches you and helps you catch errors.




